Semantic interoperability for Plug-and-Work-functions in Industrie 4.0
- the combination of OPC-UA and AutomationML as industrial standards for interoperability

Olaf Sauer
Business Unit Automation
olaf.sauer@iosb.fraunhofer.de
Major challenges for Industrie 4.0

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standards</td>
<td>147</td>
</tr>
<tr>
<td>Process-/Work organization</td>
<td>129</td>
</tr>
<tr>
<td>Products available</td>
<td>98</td>
</tr>
<tr>
<td>New business models</td>
<td>85</td>
</tr>
<tr>
<td>Security, Know-how protection</td>
<td>78</td>
</tr>
<tr>
<td>Knowledge of staff</td>
<td>70</td>
</tr>
<tr>
<td>Research</td>
<td>64</td>
</tr>
<tr>
<td>Qualification</td>
<td>42</td>
</tr>
<tr>
<td>Legal conditions</td>
<td>30</td>
</tr>
</tbody>
</table>
Goal: Plug-and-work for machines and components

New module added!
AutomationML consists of...

CAEX IEC 62424
Top level format

- Plant topology information
 - Plants
 - Cells
 - Components
 - Attributes
 - Interfaces
 - Relations
 - References

AutomationML
Engineering data

Object A

Object A₁

Object A₂

...

Object Aₙ

COLLADA
- Geometry
- Kinematics

PLCopen XML
- Behaviour
- Sequencing

Further XML Standard format
- Further aspects of engineering information

Get rid of the paper interface!
www.automationml.org
Description of the content to be communicated by OPC-UA’s information model.
Transfer of configuration data
Secure plug-and-work „integration layer“: authenticates machines and components

Signed and encrypted communication

Secure plug-and-work „integration layer“: authenticates field devices and components

Signed and encrypted communication

Component is „unlocked“, only signed components maybe integrated
State of the art (1)

TIGER – first Single-Chip for PROFINET
- Cooperation with Siemens AG and Phoenix Contact
- First solution to economically integrate PROFINET in simple field devices
- Cost reduction app. 40%
- System-on-chip with 7 Mio. gate equivalents

One of the smallest OPC-UA servers
- OPC-UA usable as middleware for continuous nRT-communication from chipevel up to applications
- Demands 5 kB RAM and 10 kB ROM (4 services)
- Runs also on TIGER in parallel to PROFINET
State of the art (2)

Modeller: Graphical editing and modelling of OPC UA server address rooms
State of the art (3)
Common working group

Use cases:

- Seamless exchange of configuration data based on AutomationML between planning systems and operational IT-systems
 - How can these information be modeled using AutomationML structures and attributes?
 - Example: describe a field device in AutomationML and transfer the configuration data via OPC-UA to the controller

- Exchange of AutomationML project data using OPC UA technologies
 - How can AutomationML project structures be represented by OPC UA data model?
 - Use OPC-UA to store and manage AutomationML models
Contact

Dr. Olaf Sauer

olaf.sauer@iosb.fraunhofer.de
www.mes.fraunhofer.de
www.klkblog.de

Tel.: +49-721-6091-477